If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3x-2018=0
a = 1; b = -3; c = -2018;
Δ = b2-4ac
Δ = -32-4·1·(-2018)
Δ = 8081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{8081}}{2*1}=\frac{3-\sqrt{8081}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{8081}}{2*1}=\frac{3+\sqrt{8081}}{2} $
| 3+9+4=y | | 19x+20x-5=180 | | c=38.26+0.50 | | 1/2x+1/2x=44 | | 4(x+7)-8x=-8 | | 0,6^3x5=0.6^8 | | m−9=–m+9 | | 40/x=6 | | 2a+9=1+3(2+a) | | −0.1x−3x=−0.5x+21 | | 0,63x5=0.68 | | x+138+58=180 | | 71x-1=20+180 | | 71x-1=20=180 | | 71x-1+20=180 | | -5⁄2a+5=25= | | 50x=60x(x-1/2) | | 8(b+5)=34 | | (5x-80)=90 | | 3a-15=6= | | d/5-8=-3 | | 3x-4=1/2(x+10) | | 9x-10+3x+6=140 | | 14+4a=34 | | x+85+128=180 | | =2y(3y-4) | | 8/v-12=46 | | c-18=18 | | 4=100-4n | | (x+1)(x+2)(x+3)(x+4)-24=0/ | | 40-6t=5+t | | (1)/(8)x+(2)/(5)+(1)/(2)x=(3)/(8)x+(3)/(4)x |